matrix table - significado y definición. Qué es matrix table
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es matrix table - definición

TABLE LAYOUT FOR VISUALIZING PERFORMANCE; ALSO CALLED AN ERROR MATRIX
Matching matrix; Table of confusion; Error matrix

Confusion matrix         
In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one (in unsupervised learning it is usually called a matching matrix). Each row of the matrix represents the instances in an actual class while each column represents the instances in a predicted class, or vice versa – both variants are found in the literature.
MATRIX MATH         
  • The vectors represented by a 2-by-2 matrix correspond to the sides of a unit square transformed into a parallelogram.
  • orientation]], since it turns the counterclockwise orientation of the vectors to a clockwise one.
  • 150px
  • 150px
  • 150px
  • An example of a matrix in Jordan normal form. The grey blocks are called Jordan blocks.
  • An undirected graph with adjacency matrix:
<math display="block">\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}.</math>
  • Two different Markov chains. The chart depicts the number of particles (of a total of 1000) in state "2". Both limiting values can be determined from the transition matrices, which are given by <math>
\begin{bmatrix}
 0.7 & 0\\
 0.3 & 1
\end{bmatrix}</math> (red) and <math>
\begin{bmatrix}
 0.7 & 0.2\\
 0.3 & 0.8
\end{bmatrix}</math> (black).
  • Schematic depiction of the matrix product '''AB''' of two matrices '''A''' and '''B'''.
  • 125px
  • indefinite]].
  • 125px
  • 150px
  • 175px
RECTANGULAR ARRAY OF NUMBERS, SYMBOLS, OR EXPRESSIONS, ARRANGED IN ROWS AND COLUMNS
Matrix (Mathematics); Matrix (math); Submatrix; Matrix theory; Matrix (maths); Submatrices; Matrix Theory and Linear Algebra; Infinite matrix; Square (matrix); Matrix operation; Square submatrix; Matrix(mathematics); Real matrix; Matrix math; Matrix index; Equal matrix; Matrix equation; Matrix (computer science); Matrix notation; Empty matrix; Real matrices; Principal submatrix; Array (mathematics); Matrix power; Complex matrix; Complex matrices; Applications of matrices; Rectangular matrix; Uniform matrix
<language> An early system on the UNIVAC I or II. [Listed in CACM 2(5):1959-05-16]. (1997-02-27)
Logical matrix         
  • Multiplication of two logical matrices using [[boolean algebra]].
MATRIX WITH ENTRIES FROM THE BOOLEAN DOMAIN B = {0, 1}
Binary matrix; (0,1) matrix; (0,1)-matrix; (0,1)-matrices; 0,1-matrix; 0-1 matrix; Matrix logic; Zero-One matrix; Logical vector; Logical matrices
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1) matrix is a matrix with entries from the Boolean domain Such a matrix can be used to represent a binary relation between a pair of finite sets.

Wikipedia

Confusion matrix

In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as error matrix, is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one; in unsupervised learning it is usually called a matching matrix.

Each row of the matrix represents the instances in an actual class while each column represents the instances in a predicted class, or vice versa – both variants are found in the literature. The name stems from the fact that it makes it easy to see whether the system is confusing two classes (i.e. commonly mislabeling one as another).

It is a special kind of contingency table, with two dimensions ("actual" and "predicted"), and identical sets of "classes" in both dimensions (each combination of dimension and class is a variable in the contingency table).